
CHINO

IR-CA 시리즈「통신」사용설명서(옵션)

본 사용설명서는 반드시, 본 계기와 가까운 곳에 보관하여 주십시오.

본 사용설명서는 제품을 사용하게 될 사용자에게 반드시 전달하여 주십시오.

잠정판

한국 CHINO 주식회사

목 차

머리말····································	1
2. 통신 사양	1
3. 결선···········	2
Modbus Protocol	3
4.1 전송 DATA·····	3
4.2 메세지 프레임 구성	3
4.3 DATA 시간 간격······	3
4.4 메시지 구성	4
4.4.1 Slave Address	4
4.4.2 Function Code	4
4.4.3 DATA 부·····	4
4.4.4 Reference 번호······	5
4.4.5 Error Check ····	5
4.4.5.1 CRC-16 계산·····	5
4.4.5.2 LRC 계산·····	6
4.5 Function Code ····	7
4.5.1 디지털 설정값 읽기~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	7
4.5.2 디지털 입력 DATA 읽기	7
4.5.3 아날로그 설정값 읽기	8
4.5.4 아날로그 입력 DATA 읽기	8
4.5.5 디지털 설정값 쓰기	9
4.5.6 이날로그 설정값 쓰기	9
4.5.7 LOOP BACK TEST	10
4.5.8 복수의 디지털 설정값 쓰기	10
4.5.9 복수의 아날로그 설정값 쓰기	11
4.6 이상시 처리	12
4.6.1 응답이 없을 경우	12
4.6.2 Error 메세지 응답·····	12
4.7 Reference 丑·····	13
4.7.1 아날로그 설정값	13
4.7.2 아날로그 입력 DATA·····	14
4.7.3 디지털 설정값	15
4.7.4 디지털 입력 DATA ······	15

■본 설명서에서 사용되는 기호 본 계기를 안전하게 사용하고, 고장과 생각지 못한 사태가 발생하지 않기 위해 주의할 사항을 중요도에 따라 다음과 같은 기호로 표시하고 있습니다.

중요도	기 호	내 용		
1	A	가 있는 설명문을 취급하고 있는 타이틀에 기재되어 있다.		
2	경고	감전 등 인체에 위험(생명에 위험을 미칠 염려가 있음)한 사고, 화재·부상의 원인 및 본체의 고장과 사고가 예측 가능한 경우.		
3	주의	인체에 상해를 입히거나, 본체에 생각지 못한 사태가 발생할 염려가 있는 경우.		
4	비고	사용설명서의 보완적인 내용으로써, 알아두면 도움이 되는 항목.		

1. 머리말

이 사용설명서는, 방사온도계 IR-CA 시리즈의 통신 인터페이스 사양 및 취급에 대하여 설명하고 있습니다. 단, 이 설명서에서는 Modbus Protocol에 대한 내용만 기제되어 있습니다.

2. 통신 사양

■ 통신 방식 반이중 통신방식

■ Protocol Modbus Protocol(RTU Mode)

■ 전송 속도 19200, 9600bps 전환

■ START bit 1bit

■ DATA 길이 8bit

■ Parity bit 없음

■ STOP bit 1bit

■ 전송 Code 바이너리

■ Error Check CRC-16

■ DATA 전송 순서 무수순

설정 방법은 「IR-CA 시리즈 방사온도계 사용설명서」를 참조하여 주십시오.

3. 결선

경고

감전 방지를 위하여, 반드시 전원 결선 작업 전에 공급 전원을 OFF로 하여 주십시오.

여기에서는 IR-CA 방사온도계와 PC 를 접속하는 방법을 설명하고 있습니다. 본 계기의 통신 인터페이스는 RS-485 를 채용하고 있으므로 RS-232C 를 통신 인터페이스로 사용하고 있는 상위 PC 와의 접속에는 RS-232C⇔RS-485 통신변환기가 필요합니다. 이 사용설명서에서는 통신변환기 K3SC-10(옴론社)을 사용한 경우에 대하여 설명하고 있습니다.

① PC(RS-232C 용D-SUB 9Pin) ~ 통신변환기(K3SC-10)사이

• 당사 액세서리 접속 케이블을 사용한 경우

당사 접속케이블 마커명	통신변환기(K3SC-10)
RD	5 번 SD
SD	6 번 RD
SG	3 번 SG

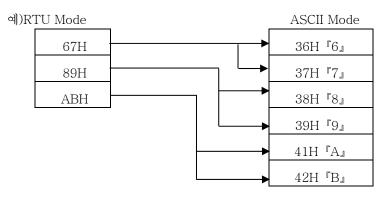
• 접속케이블 작업 예

D-SUB 9Pin 의 결선도

신호명	Pin 번호		통신변환기(K3SC-10)
SD	3		5 번 SD
RD	2		6 번 RD
SG	5		3 번 SG
RS	7 —		
CS	8 _		
DR	6 —	<u> </u>	
ER	4 —		

② 통신변환기(K3SC-10) ~ IR-CA 사이

통신변환기(K3SC-10)	IR-CA 케이블 마커명, 또는 단자명	
12 번 SDB(+)	OPTION+	
9 번 SDA(-)	OPTION -	


4. Modbus Protocol

본 계기에서는 Modbus Protocol RTU Mode 만 서포트하고 있기 때문에 이하의 설명 중 ASCII Mode 의 설명은 참고로 읽어주십시오.

4.1 전송 DATA

RTU Mode 는, 바이너리 전송입니다. ASCII Mode 는, RTU 의 8bit 바이너리를 상위, 하위 4bit 로 분해하여 각 각 문자화(0~9, A~F)합니다.

RTU Mode 는 ASCII Mode 와 비해 메세지 길이가 절반이기 때문에 전송을 효과적으로 할 수 있다.

4.2 메세지 프레임 구성

RTU Mode 는, 메세지 부분만으로 구성됩니다.

ASCII Mode 는, 개시문자 『: (3AH)』, 메세지, 및 종료문자 『CR(0DH)+ LF(0AH)』로 구성됩니다.

RTU Mode	ASC	ASCII Mode		
메세지	:	메세지	CR	LF

4.3 DATA 의 시간 간격

RTU Mode: 28bit 시간 이하(9600bps: 2.9msec, 19200bps: 1.4msec)

ASCII Mode: 1초 이하

메시지를 보낼 때에는 1 개의 메시지를 구성하는 DATA 의 시간 간격은, 상기의 시간 이상으로 길어지지 않도록 해주십시오. 상기의 시간 간격보다 긴 경우, 수신측(본 계기)은 송신측에서 송신이 종료된 것으로 판단하여, 이상메세지를 수신한 것으로 처리합니다.

RTU Mode 에서는 메세지 캐릭터를 연속해서 보내지 않으면 안되지만, ASCII Mode 에서는 캐릭터간이 최대 1 초이기 때문에 MASTER(PC)처리 속도가 비교적 느려도 사용이 가능합니다.

4.4 메세지 구성

MODBUS 메세지는, RTU, ASCII Mode 둘다 다음과 같은 구성을 갖습니다.

Slave Address
Function Code
DATA
Error Check

4.4.1 Slave Address

Slave Address 는, 전면 KEY 설정에 따라 미리 $1\sim31$ 의 범위에서 설정합니다. MASTER 는 통상 1 대의 Slave 와 전송을 합니다. MASTER의 메세지는 접속된 전체 기기가 공통으로 수신하지만, 수신 메세지 중에 Slave Address 와 일치한 Slave 만이 그 메시지에 응답합니다.

Slave Address 「0」은, MASTER 에서 모든 Slave 에 대한 메세지(Broadcast)에 사용합니다. 이 경우 Slave 는 응답을 보내지 않습니다.

4.4.2 Function Code

Function Code 는, Slave 에 실행시키고자 하는 기능 Code 로, DATA는 대략 다음과 같이 분류되어 있습니다. 상세 내용은 Reference 표를 참조하여 주십시오.

①디지털 설정값 측정 단위, Others(기타)

②디지털 입력 DATA 온도 경보, 자기 진단 이상 상태

③아날로그 설정값 각종 설정정보

④아날로그 입력 DATA 측정 DATA, STATUS(상태) 등

<Function Code 丑>

Code	기능	단위
01	디지털(ON/OFF)설정값 읽기	1bit
02	디지털 입력 DATA 읽기	1bit
03	아날로그 설정값 읽기	16bit
04	아날로그 입력 DATA 읽기	16bit
05	디지털 설정값 쓰기	1bit
06	아날로그 설정값 쓰기	16bit
08	수신 DATA 를 송신(진단용)	
15	복수의 디지털값 쓰기	
16	복수의 아날로그 설정값 쓰기	

4.4.3 DATA 부

Function Code 에 따라 DATA 구성은 달라집니다. MASTER 에서 요구할 때에는 읽고, 쓰기를 할 대상 DATA 의 Code 번호(다음에 설명할 Reference 번호에서 계산할 상대번호)나, DATA 개수 등으로 구성됩니다. Slave 에서의 응답은, 요구에 대한 DATA 등으로 구성됩니다.

Modbus 의 기본 DATA 는 모두 16bit 의 정수로, 부호의 유무는, DATA 마다 규정됩니다.

4.4.4 Reference 번호

IR-CA 내의 DATA 에는 하기의 표와 같이「Reference 번호」가 할당되어 있어, DATA 를 읽고, 쓰기를 할 때에는 이 번호가 필요합니다. DATA 의 종류에 따라 하기의 표와 같이 분류됩니다. 메시지 내에서의 번호 지정은 각 각의 Reference 번호에 대한「상대번호」로 실행합니다.

DATA 종류	Reference 번호	상대번호
디지털 설정값	1~ 10000	Reference 번호 - 1
디지털 입력 DATA	10001~ 20000	Reference 번호 - 10001
아날로그 입력 DATA	30001~ 40000	Reference 번호 - 30001
아날로그 설정값	40001~ 50000	Reference 번호 - 40001

예) 「Reference 번호 30011」의 측정값(온도 DATA)의 상대 번호는 「10」이 됩니다.

4.4.5 Error Check

전송 프레임의 Error Check 는, Mode 에 따라 다릅니다.

RTU Mode: CRC-16 ASCII Mode: LRC

4.4.5.1 CRC-16 계산

CRC 방식은 보내야 할 정보를 생성다항식으로 나눠서, 그 나머지를 정보의 뒤에 첨부하여 송신합니다. 생성다항식은 다음과 같습니다.

$$1 + X^2 + X^{15} + X^{16}$$

Slave Address 에서 DATA 의 마지막까지를 대상으로 하기와 같은 순서로 계산합니다.

- 1) CRC-16 DATA(X 라고 한다)의 초기화(=FFFFH)
- 2) DATA1 과 X 의 배타적 논리합(Ex-OR)→ X
- 3) X를 오른쪽으로 1bit SHIFT → X
- 4) Carry 가 나오면 A001H 와 Ex-OR을 취합니다. 나오지 않으면 5)로 → X
- 5) 8회 SHIFT할 때까지 3)과 4)를 반복합니다.
- 6) 다음의 DATA 와 X 의 Ex-OR → X
- 7) 3)~ 5)와 같음.
- 8) 마지막 DATA 까지 반복합니다.
- 9) 계산한 16bit DATA(X)의 하위, 상위의 순서로 메시지를 작성합니다.

예)DATA 가, 02H 07H 인 경우,

CRC-16 은, 1241H 가 되기 때문에,

Error Check DATA 로써는 41H 12H 가 됩니다.

4.4.5.2 LRC 계산

Slave Address 에서 DATA 의 마지막까지를 대상으로 하기와 같은 순서로 계산합니다.

- 1) RTU Mode 에서 메시지를 작성.
- 2) DATA 의 선두(Slave Address)에서 마지막까지를 가산 → X
- 3) X의 보수(bit 반전)을 취합니다. → X
- 4) 1을 더합니다. (X=X+1)
- 5) X를 LRC 로써 메시지의 마지막에 첨부합니다.
- 6) 전체를 ASCII 문자로 변환합니다.

예)DATA 가 오른쪽과 같은 경우. 02H 07H

LRC 는, F7H 가 되기때문에, 바이너리 메시지는 →

02H	07H	F7H
0211	0111	1 1 1 1

ASCII 메세지는→ 30H 32H 30H 37H 46H 37H

4.5 Function Code

Function Code 별 응답을 4.4.2 의 표를 참조하여 주십시오. 주의) 이상 발생시 응답은, 4.6 항을 참조하여 주십시오.

4.5.1 디지털 설정값 읽기

[Function Code: 01(01H)]

지정된 번호에서 지정된 개수만 「번호의 연속한 디지털(ON/OFF)설정값」을 읽습니다. ON/OFF DATA 는, 1 개의 DATA(1 바이트)에 8 개씩 번호순으로 나열되어 응답 메시지의 DATA를 구성합니다. 각 DATA 의 LSB(DO 측)가 가장 빠른 번호의 디지털 DATA 가 됩니다. 읽기 개수가, 8 의 배수가 아닌 경우는 불필요한 bit 는 0 이 됩니다.

예)Slave1 의 디지털 설정값 Reference 번호 1 읽기

<RTU Mode>

MASTER→フ]プ	
Slave Address	01H
Function Code	01H
개시번호(H)	00H
개시번호(L)	00H
개수(H)	00H
개수(L)	01H
CRC(L)	FDH
CRC(H)	CAH

기기→ MASTER(정상)

	0 0,
Slave Address	01H
Function Code	01H
DATA 수	01H
최초 8DATA	01H
CRC(L)	90H
CRC(H)	48H

최초 8DATA

0 0 0 0 0 0 1 0 Reference 번호 8 7 6 5 3 2 1

(01H)

주의) 개시번호(상대번호)는 「Reference 번호 - 1」

4.5.2 디지털 입력 DATA 읽기

[Function Code: 02(02H)]

지정된 번호에서 지정된 개수만「번호의 연속한 디지털(ON/OFF)입력 DATA」를 읽습니다. ON/OFF DATA 는, 1 개의 DATA(1 바이트)에 8 개씩 번호순으로 나열되어 응답 메시지의 DATA 를 구성합니다. 각 DATA 의 LSB(DO 측)가 가장 빠른 번호의 디지털 DATA 가 됩니다. 읽기 개수가 8 의 배수가 이닌 경우는, 불필요한 bit 는 0 이 됩니다.

응답예는 「Function Code01」과 같습니다. 단, 개시번호(상대번호)는 「Reference 번호 - 10001」

4.5.3 아날로그 설정값 읽기

[Function Code: 03(03H)]

지정된 번호에서 지정된 개수만 「번호의 연속한 아날로그 설정값(2 바이트: 16bit)DATA」을 읽습니다. DATA 는, 상위 8bit 와 하위 8bit 로 분할되어 번호순으로 나열되어지고, 응답 메세지의 DATA 를 구성합니다.

예)Slave1 의 아날로그 출력 Scaling 하한값과 상한값 읽기(Reference 번호 40011~40012 의 2 개 DATA 읽기)

Reference 번호	40011	40012		
DATA	500(01F4H)	1200(04B0H)	← OUTL=500°C	OUTH=1200℃의 예

<RTU Mode>

MASTER→7]7]

Slave Address	01H
Function Code	03H
개시번호(H)	00H
개시번호(L)	0AH
개수(H)	00H
개수(L)	02H
CRC(L)	E4H
CRC(H)	09H

기기→MASTER(정상)

Slave Address	01H
Function Code	03H
DATA 수	04H
OUTL의 DATA(H)	01H
OUTL의 DATA(L)	F4H
OUTH의 DATA(H)	04H
OUTH의 DATA(L)	ВОН
CRC(L)	В9Н
CRC(H)	49H

주의)개시번호(상대번호)는「Reference 번호 - 40001」 주의) DATA 수는, DATA 의 바이트수(요구 개수와는 다릅니다.)

4.5.4 아날로그 입력 DATA 읽기

[Function Code: 04(04H)]

지정된 번호에서 지정된 개수만「번호의 연속한 아날로그입력(2 바이트:16bit)DATA」을 읽습니다. DATA 는, 상위 8bit 와 하위 8bit 로 분류되어 번호순으로 나열되어 응답 메시지의 DATA를 구성합니다. 응답예는 「Function CodeO3」과 같습니다. 단, 개시번호(상대번호)는「Reference 번호 - 30001」

4.5.5 디지털 설정값 쓰기

[Function Code: 05(05H)]

지정된 번호의 디지털 설정값을 지정된 상태(ON/OFF)로 합니다.

예)Slave1 의 디지털 설정값 Reference 번호 1 을 ON 으로 합니다. <RTU Mode>

MASTER→フ]フ]

THE STEEL STATE	1
Slave Address	01H
Function Code	05H
설정값 번호(H)	00H
설정값 번호(L)	00H
설정 상태(H)	FFH
설정 상태(L)	01H
CRC(L)	4DH
CRC(H)	FAH

기기→MASTER(정상)

Slave Address	01H
Function Code	05H
설정값 번호(H)	00H
설정값 번호(L)	00H
설정 상태(H)	FFH
설정 상태(L)	00H
CRC(L)	4DH
CRC(H)	FAH

주의) 정상 응답시는 요청 메시지와 같은 응답이 됩니다.

주의) 설정값 번호(상대번호)는, 「Reference 번호 -1」

주의) OFF 로 할 때에는 0000H를, ON 으로 할 때에는 FF00H를 설정합니다.

4.5.6 아날로그 설정값 쓰기

[Function Code: 06(06H)]

지정된 번호의 아날로그 설정값을 지정된 값으로 합니다.

예)Slave1 의 방사율 1 설정을 1.000 으로 설정.

아날로그 설정값 Reference 번호 40001 을 1000 으로 합니다.

<RTU Mode>

MASTER→フ]フ]

Slave Address	01H
Function Code	06H
설정값 번호(H)	00H
설정값 번호(L)	00H
설정 상태(H)	03H
설정 상태(L)	E8H
CRC(L)	89H
CRC(H)	74H

기기→MASTER(정상)

Slave Address	01H
Function Code	06H
설정값 번호(H)	00H
설정값 번호(L)	00H
설정 상태(H)	03H
설정 상태(L)	E8H
CRC(L)	89H
CRC(H)	74H

주의) 정상 응답시는 요청 메시지와 같은 응답이 됩니다.

주의) 설정값 번호(상대번호)는, 「Reference 번호 -40001」

주의) OFF 로 할 때에는 0000H를, ON 으로 할 때에는 FF00H를 설정합니다.

4.5.7 LOOP BACK TEST

[Function Code: 08(08H)]

MASTER, Slave 간의 전송 Check 를 실행합니다. 지정된 진단 Code 에 맞는 응답을 실행합니다. 본 계기에서는 「수신 DATA 를 그대로 송신하는 Return Check」를 수행, 진단 Code 는「0000H」고정입니다.

예)Slave1 에「LOOP BACK TEST」를 실시.

<RTU Mode>

MASTER→7]7]

Slave Address	01H
Function Code	08H
진단 Code(H)	00H
진단 Code(L)	00H
임의 DATA	*
임의 DATA	*
CRC(L)	*
CRC(H)	*

기기→MASTER(정상)

\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	
Slave Address	01H
Function Code	08H
진단 Code(H)	00H
진단 Code(L)	00H
임의 DATA	*
임의 DATA	*
CRC(L)	*
CRC(H)	*

4.5.8 복수의 디지털 설정값 쓰기

[Function Code: 15(0FH)]

지정된 번호에서, 지정된 개수의 디지털 설정값을 지정된 상태(ON/OFF)로 합니다.

ON/OFF 의 지정은, 번호순으로 8 개 단위로 1 의 DATA 가 됩니다. 각 DATA 의 LSB(D0 측)가 가장 빠른 번호의 디지털 DATA 가 됩니다. 쓰기 개수가 8 의 배수가 아닌 경우는, 불필요한 bit 는 무시됩니다.

예)Slavel 의 아날로그 모의 출력을 ON 으로 합니다.

(디지털 설정값 Reference 번호 9를 ON 으로 합니다.)

<RTU Mode>

MASTER→フ]フ]

01H
0FH
00H
08H
00H
01H
01H
01H
0EH
96H

기기→MASTER(정상)

Slave Address	01H
Function Code	0FH
개시번호(H)	00H
개시번호(L)	08H
개수(H)	00H
개수(L)	01H
CRC(L)	15H
CRC(H)	C9H

주의)개시번호(상대번호)는, 「Reference 번호 - 1」

4.5.9 복수의 아날로그 설정값 쓰기

[Function Code: 16(10H)]

지정된 번호에서, 지정된 개수의 아날로그 설정값을 지정된 값으로 합니다. DATA 는, 상위 8bit 와 하위 8bit 로 분류되어 번호순으로 나열되어 보내집니다.

예)Slave1 의 아날로그 출력 ScalingL 을 500℃, H 를 1200℃로 합니다. (아날로그 설정값 Reference 번호 40011 에서 40012 2 개를 설정합니다.)

<RTU Mode>

MASTER→7]7]

Slave Address	01H
Function Code	10H
개시번호(H)	00H
개시번호(L)	0AH
개수(H)	00H
개수(L)	02H
DATA 수	04H
최초 DATA(H)	01H
최초 DATA(L)	F4H
2 번째 DATA(H)	04H
2 번째 DATA(L)	ВОН
CRC(L)	30H
CRC(H)	AAH

기기→MASTER(정상)

Slave Address	01H
Function Code	10H
개시번호(H)	00H
개시번호(L)	0AH
개수(H)	00H
개수(L)	02H
CRC(L)	61H
CRC(H)	CAH

주의)개시번호(상대번호)는, 「Reference 번호 - 40001」

4.6 이상시 처리

MASTER 의 메세지 내용에 이상이 있었을 때에는 다음과 같이 응답합니다.

4.6.1 응답이 없는 경우

다음의 경우는, 메시지를 무시하고, 무응답이 됩니다.

- ① 메시지에 전송 Error(Overrun, Framing, Parity, CRC, 또는 LRC)를 검출한 경우.
- ② 메세지 중에 Slave Address 가 자신의 Address 가 아닌 경우.
- ③ 메시지의 DATA 간격이 긴 경우.

RTU Mode : 28bit 이상 ASCII Mode : 1초 이상

- ④ 전송 파라메타가 일치하지 않을 경우.
- ⑤ 수신한 파라메타가 64 바이트를 넘고 있을 경우.

주의) 쓰기 Function 에서 Slave Address 가「0」인 경우는, 메세지에 Error 가 없으면, 메시지의 실행은 수행하지만, 무응답이 됩니다. 또한, 메시지에 상기 Error 가 있는 경우에도 무응답이 되기 때문에 Slave Address 가「0」인 경우에는 본 계기에서의 응답만으로는 정상/이상의 판단이 불가능합니다.

4.6.2 Error 메시지의 응답

MASTER 의 메시지의 내용에, 3.6.1 항의 Error 가 없고, 아래의 이상이 검출되었을 때는, 그 Error 내용을 표시하는 Code 를「Error 메세지」로써 응답합니다.

Error 메시지의 포멧은 아래와 같습니다.

Slave Address				
Function Code + 80H				
Error Code				
CRC(L)				
CRC(H)				

Function Code	Function Code + 80H
01	81H
02	82H
03	83H
04	84H
05	85H
06	86H
08	88H
15	8FH
16	90H

Error Code 는, 아래와 같습니다.

Error Code	내 용
01H	Function Code 불량
0111	규정되어 있지 않는 Function Code 를 수신한 경우.
02H	상대번호(Reference 번호)불량
0211	수신한 개시 번호 또는, 설정값 번호가 규정외인 경우.
03H	DATA 개수 불량
ОЗП	수신한 메시지에 응답하여 송신하는 DATA 개수가 규정한 개수를 넘은 경우.
1111	설정값 범위외
11H	Reference 표에 규정된 설정 범위 이외의 수치를 설정한 경우.
1011	설정불가
12H	LOCK 되어 있지 않은 경우, 설정하려고 한 경우.

4.7 Reference 班

4.7.1 아날로그 설정값

FNC Code : 적용 Function Code, R/W···R:Read(읽기), W : Write(쓰기)

	FNC Code : 석용 Function Code, R/W···R:Read(읽기), W : Write(쓰기)							
번호	Code	R/W	DATA 명	설정 범위 (통신상 범위)	초기값	비고		
40001	03 06 16	R W W	방사율(비)1	0.050~1.999 (50~1999)	1.000	방사율을 1000 배 한 값으로 송/수신합니다. 여기에서는 하기의 방사율(비)에 대한 설정입니다. •단색 방사온도계용 •IR-CAQ 자동레인지 전환시의 저온측용 •IR-CAQ 자동레인지 전환이 아닌 경우 •IR-CAW 의 TP 레인지용		
40002	03 06 16	R W W	신호변조	0~1 0 : Delay 1 : Peak	0			
40003	03 06 16	R W W	시정수의 소수점 자리수	1~2 1:1자리 2:2자리	1			
40004	03 06 16	R W W	변조시정수	시정수 소수점 1 자리 0.0~99.9 시정수 소수점 2 자리 0.00~9.99(0~9 99)	0.0	시정수의 소수자리수에 따른 시정수를 10 배, 또는 100 배 한 값으로 송/수신합니다.		
40005	03 06 16	R W W	Peak 감쇠율	0~3 0:0°C/sec 1:2°C/sec 2:5°C/sec 3:10°C/sec	0			
40006	03 06 16	R W W	방사율(비)2	0.050~1.999 (50~1999)	1.000	방사율을 1000 배한 값으로 송/ 수신합니다. 여기에서는 하기의 방사율(비)에 대한 설정입니다. • IR-CAQ 자동레인지 전환시의 고온측용 • IR-CAW 의 InGaAs 용		
40007	03 06 16	R W W	방사율 3	0.050~1.999 (50~1999)	1.000	방사율을 1000 배한 값으로 송/수신합니다. 여기에서는 하기의 방사율(비)에 대한 설정입니다. • IR-CAW 의 Si 용		
40011	03 06 16	R W W	아날로그 출력 Scaling 하한값	0~6280℃	눈금의 하한값			
40012	03 06 16	R W W	아날로그 출력 Scaling 상한값	0~6280℃	눈금의 상한값			

40013	03	R	아날로그 출력	0~100%	0	
	06	W	모의 출력값			
	16	W				
40021	03	R	경보 Mode	0~2	2	
	06	W		0 : 없음		
	16	W		1 : 하한 Mode		
				2 : 상한 Mode		
40022	03	R	경보온도	0~6280℃		
	06	W				
	16	W				
40031	03	R	Sample hold / Peak	0~2	0	
	06	W	hold	0 : 없음		
	16	W		1 : Sample hold		
				2 : Peak hold		
40032	03	R	Peak hold	0~2	0	
	06	W	Reset 방식	0 : Reset 없음		
	16	W		1 : 내부 Reset		
				2 : 외부 Reset		
40033	03	R	Peak hold	0.0~99.9 초	0.0	설정 시간을 10 배한 값으로
	06	W	Reset 시간	(0~999)		송수신 합니다.
	16	W				

4.7.2 아날로그입력 DATA

FNC Code : 적용 Function Code, R/W…R:Read(읽기), W : Write(쓰기)

번호	FUC Code	R/W	DATA 명	상세 설명
30001	04	R	형식 Code1, 2 째 자리수	
30002	04	R	형식 Code3, 4 째 자리수	
30003	04	R	형식 Code5, 6 째 자리수	
30004	04	R	형식 Code7, 8 째 자리수	
30011	04	R	측정값	절대온도×10 0℃=2732
30012	04	R	측정 상태	0=정상 1=Overflow 2=Underflow 3=Clamp(2 색형만) 4=하드웨어 Error
30013	04	R	기기 내부 온도	절대온도×10 0℃=2732

4.7.3 디지털 설정값

FNC Code : 적용 Function Code, R/W···R:Read(읽기), W:Write(쓰기)

번호	FUC Code	R/W	DATA 명	상세 설명
1	01 05	R W	측정 단위	0 = °C 1 = °F
9	01 05	R W	아날로그 모의 출력	0=측정값 출력 1=모의 출력
25	01 05	R W	레이저 조사	0 = OFF 1 = ON

4.7.4 디지털 입력 DATA

FNC Code : 적용 Function Code, R/W···R:Read(읽기), W : Write(쓰기)

번호	FUC Code	R/W	DATA 명	상세 설명
10001	02	R	자기 진단 이상	0=없음 1=있음
10002	02	R	하한 경보	0=없음 1=있음
10003	02	R	상한 경보	0=없음 1=있음

IR-CA 시리즈통신사용설명서(옵션)'03 - 9 잠정판

한국 CHINO 주식회사

★ 445-813 경기도 화성시 동탄면 오산리 296-1TEL: (031)379-3700(대) A/S: (031)379-3769

FAX: (031)379-3777

홈페이지 : <u>http://www.chinokorea.com</u> E-mail : <u>webmaster@chinokorea.com</u>

(판매점)			